Introduction to Polyethylene Terephthalate (PET)

History

The PET bottle was invented in 1973 by Nathaniel Wyeth and patented by DuPont.

The Power of Polyethylene **Terephthalate (PET)**

https://youtu.be/o3mr8ViytDY?si=5f4X1IK tcaB4aLfw

Properties

Polyethylene Terephthalate (PET) is

Versatile plastic widely used in various industries and is popular choice for packaging, textiles, and other applications

Good resistance power – PET products have good resistance against different chemicals such as acids, bases, etc.

Crystal clear polymer - It is a crystal clear polymer with good purity and health. You must have seen the sparkling PET bottles with brilliant glass-clear presentation attract us.

> Safe – This polymer has a high impact and tensile strength that makes it ideal for carbonated products.

Purity – The products of PET taste good and comply with international food contact regulations.

No Leakage and damage -

Due to the absence of a weld line

in the base, PET bottles are free

RTIES

from leakage and damage.

PROPE

Good barrier – PET products have low permeability to oxygen, carbon dioxide and water, therefore, it maintains the integrity of products with good shelf life.

Recyclable – PET polymer is recyclable and can be reshaped in different shapes.

www.perpetualsolutions.co.in

Lightweight – The lightweight of PET products reduces the shipping costs compared to glass

Chemical Resistance

Properties	Resuls
Acid	Good
Alcohols	Good
Alkalis	Poor
Aromatic Hydrocarbon	Fair
Oils & Greases	Good
Halogens	Good
Ketone	Good

Thermal Properties

Physical Properties

Properties	Valu
Density	1.45
Flammability	Self
Limiting Oxygen Index	21%
Refractive index	1.58
Resistance to Ultraviolet ray	Goo
Water Absorption	0.1%

Properties

Coefficient of thermal expansion (X 10⁻⁶ K⁻¹)

Specific Heat (J.K⁻¹.kg⁻¹)

Thermal Conductivity

www.perpetualsolutions.co.in

gcm-3

Extinguishing

-1.64

d

,)

Results

20-80

1200-1350

23

Raw Materials and Feedstocks

PET is primarily produced from two raw materials:

- 1. Ethylene Glycol
- 2. Purified Terephthalic Acid (PTA)

Ethylene Glycol is derived from petroleum-based sources, such as natural gas and crude oil & PTA can also be produced from paraxylene.

Structure

Terephthalic Acid

Ethylene Glycol

Polyethylene Terephthalate

Process Block Diagram

Esterification

The first step in the PET production process is the esterification of ethylene glycol and terephthalic acid, resulting in the formation of bis(2-hydroxyethyl) terephthalate (BHET).

Pre-Polymer

2

3

5

Formation of intermediate polymer chains through the reaction of PTA or DMT with EG, creating a semi-solid material known as pre-polymer.

Polycondensation

The BHET molecules then undergo a polycondensation reaction, where they are linked together to form long PET polymer chains.

Solid-State Polymerization

Next step is Solid-state polymerization, which further increases the molecular weight and improves the mechanical properties of the PET.

Pelletization & Crystallization

Cooling and solidifying the molten PET into pellets, followed by crystallization to improve its stability and mechanical www.perpetualsolutions.co.in strength.

Polymerization Process Block Diagram

Esterification

- Esterification is the initial step in PET manufacturing and involves the reaction between two main raw materials: ٠ Purified terephthalic acid (PTA) and Mono ethylene glycol (MEG or EG). This reaction forms the monomer unit of PET, bis(2-hydroxyethyl) terephthalate, commonly known as BHET.
- In a controlled environment, PTA and MEG are combined in the presence of a catalyst, typically antimony trioxide ٠ (Sb2O3), and heated. The catalyst aids in speeding up the reaction without being consumed in the process.

Esterification

- The esterification reaction occurs under specific temperature and pressure conditions, typically around 220-260°C and ٠ atmospheric pressure. The reaction proceeds until equilibrium is reached, resulting in the formation of BHET and water as a byproduct.
- BHET is a diester compound consisting of two ester groups, one from each PTA molecule, and two hydroxyl (OH) ٠ groups from the MEG molecules. This BHET monomer is crucial for the subsequent polymerization steps to form PET.

- Pre-polymerization is the process where BHET monomers are polymerized to form short-chain oligomers known as pre-polymers. This step occurs under vacuum conditions to remove any residual water formed during esterification, ensuring a dry environment conducive to polymerization.
- The BHET monomers are heated to a specific temperature, typically • around 280-300°C, in the presence of a catalyst, often titanium-based compounds, which facilitate the polymerization process.

- Under these conditions, BHET monomers undergo polycondensation reactions, where the ester groups condense with the hydroxyl groups of adjacent monomers, leading to the formation of polymer chains. These chains are relatively short in length compared to the final PET polymer.
- Pre-polymerization is crucial for controlling the molecular weight distribution and viscosity of the PET resin, which affects its processability and mechanical properties in subsequent steps.

www.perpetualsolutions.co.in

contd...

3 Polycondensation

- Polycondensation is the main polymerization step where pre-polymers are further polymerized to form long-chain PET polymers. This reaction typically occurs in a multi-stage reactor system under high vacuum conditions to remove any volatile byproducts, such as water and EG.
- The pre-polymers are heated to temperatures ranging from 280-320°C, depending on the desired molecular weight of the final PET polymer. The reaction is catalyzed by antimony-based compounds, which promote the condensation of ester groups to form polymer chains.

3 Polycondensation

contd...

- During polycondensation, the polymer chains grow in length as additional BHET monomers are incorporated into the chains through esterification reactions. The reaction progresses until the desired degree of polymerization is achieved, resulting in the formation of high molecular weight PET polymers.
- Polycondensation is a critical step that determines the mechanical, thermal, and barrier properties of the PET resin, making it suitable for various applications, including packaging, textiles, and engineering plastics.

Solid-State Polymerization

- Solid-state polymerization (SSP) is an optional post-polymerization step used to further increase the molecular weight and improve the crystallinity of the PET polymer. SSP is typically conducted in a solidstate reactor at temperatures ranging from 200-240°C under vacuum or inert gas atmosphere.
- In SSP, the PET pellets obtained from polycondensation are heated and subjected to controlled agitation to promote the diffusion of polymer chains and the formation of stronger intermolecular bonds. This results in an increase in molecular weight and crystallinity.

Solid-State Polymerization

• The duration of SSP varies depending on the desired properties of the final PET resin. Longer SSP times result in higher molecular weight and improved mechanical properties, but excessive SSP can lead to thermal degradation and discoloration of the resin.

• SSP is particularly beneficial for PET applications requiring enhanced strength, stiffness, and dimensional stability, such as in the production of engineering plastics and high-performance fibers.

www.perpetualsolutions.co.in

contd...

5 Pelletization & Crystallization

- Pelletization is the final step in PET manufacturing, where the polymer is extruded and cut into small pellets or granules for ease of handling, storage, and transportation. The molten PET polymer obtained from polycondensation or SSP is forced through a die and cooled rapidly in a water bath or air stream.
- The cooled polymer strands solidify and are then cut into uniform-sized pellets using pelletizing equipment. The pellets are typically cylindrical in shape and have a smooth surface texture.

Concurrently with pelletization, crystallization of the PET polymer occurs as • the molten polymer cools and solidifies. Crystallization is a phase transition process where polymer chains arrange into ordered crystalline structures, imparting stiffness, strength, and dimensional stability to the resin.

Contd...

As an alternative to crystallization PET can be transformed into CHIPS or YARNs •

Process Flow Diagram

Melt Extrusion and Pelletization

Melt Extrusion

The PET polymer is heated and melted, then forced through a die to create a continuous plastic strand.

Pelletization

The extruded strand is then cut into small, uniform pellets, which are the primary form of PET used in manufacturing processes.

Quality Control

Rigorous quality control measures are implemented to ensure the PET pellets meet strict specifications for color, clarity, and other key properties.

Injection Molding and Blow Molding

Injection Molding

PET pellets are heated and injected into a mold, where they cool and solidify into the desired shape, such as bottles, containers, or other packaging.

Versatility

Both injection molding and blow molding techniques allow for the production of a wide variety of PET products, from small containers to large bottles and containers.

3

Blow Molding

2

Molten PET is extruded into a hollow, tubelike shape, which is then inflated and shaped using compressed air, creating hollow products like bottles and jars.

Market Scenario of Polyethylene Terephthalate PET

Polyethylene Terephthalate (PET) Market Share, By Application, 2020

Market Scenario

The global PET (Polyethylene Terephthalate) market is experiencing **robust growth**, driven by increasing demand for **sustainable packaging** solutions, **rising consumer** awareness, and advancements in recycling technologies.

PET's versatility, cost-effectiveness, and environmental benefits continue to make it a preferred material across various industries.

Global PET Market Overview

Market Size

The global PET market is estimated to reach over \$70 billion by 2025, growing at a CAGR of 5-6% during the forecast period.

Key Applications

PET is widely used in the production of bottles, containers, fibers, and films films for industries such as food and beverage, personal care, and textiles.

Recycling Initiatives

Increased focus on sustainability has led to the the development of advanced recycling technologies, further enhancing the circular economy for PET.

Demand Drivers for PET

Growing Packaging Demand

The rise in consumer demand for packaged goods, particularly in emerging markets, is a key driver for the PET market.

Shift Towards Sustainable Solutions

Increased environmental awareness and government regulations are fueling the adoption of PET as a more sustainable alternative to other plastics.

3

Expanding End-Use Industries

PET's versatility and costeffectiveness have led to its widespread use in various industries, from food and beverage to textiles.

Technological Advancements

Innovations in PET manufacturing and recycling processes are enhancing the material's properties and environmental benefits.

PET Supply and Production Trends

Capacity Expansion

Global PET production capacity has been steadily increasing to meet the rising demand across various end-use sectors.

Investments in Recycling

Major players are investing in advanced recycling technologies to enhance the circularity of PET and reduce the environmental impact.

Regional Shifts

2

3

While Asia-Pacific currently dominates the PET production landscape, other regions, such as Europe and North America, are also expanding their capacities.

PET Pricing Dynamics

PET prices are heavily influenced by the fluctuations in the prices of its key raw materials, such as paraxylene and ethylene glycol.			Changes in demand for in pricing, r closely mor	the glo PET c equirin hitor ma
Mater	Raw rial Prices	Supply- Demand B	alance	
Transp	ortation Costs	Regulatory Factors		
The cost of transporting PET resin and products can also impact the overall pricing, pricing, especially for global trade and distribution.			Governmer and regulat pricing dyna	nt polici ions, c amics i

www.perpetualsolutions.co.in

obal supply and can lead to volatility in og manufacturers to arket trends.

ties, such as tariffs and an also influence the in the PET market.

PET Applications and End-Use Sectors Solutions

Regional PET Market Developments

Asia-Pacific

1

The Asia-Pacific region dominates the global PET market, led by countries like China, India, and Japan.

Europe

Europe is a significant consumer and producer of PET, with a focus on sustainability and recycling initiatives.

North America

3

North America is a mature market for PET, with a strong focus on innovation and new product developments.

Rest of the World

4

Emerging markets markets in South America, the Middle East, and Africa are also witnessing steady growth in PET consumption.

Competitive Landscape and Key PlayersPerpenditions

Company	Market Share	Key Strength
Indorama Ventures	15-20%	Global presence, verti integration, innovation
ALPEK	10-15%	Cost-efficient productions strong regional footpri
Reliance Industries	8-12%	Competitive pricing, ex distribution network
Lotte Chemical	6-10%	Technological expertis commitment to sustair

Future Outlook and Growth Opportunities

Sustainability and Recycling

Advancements in PET recycling and the development of bio-based PET will drive the growth of the sustainable packaging market.

Emerging **Applications**

Innovative applications of PET in industries like electronics, construction, and healthcare offer new growth avenues for the market.

Geographical Expansion

Untapped markets in Africa and Latin America, their footprint.

www.perpetualsolutions.co.in

developing regions, such as present significant opportunities for PET producers to expand

Packaging Applications of PET

Beverage Bottles

PET is the material of choice for water, soft drink, and other beverage containers.

Food Packaging

PET is used for packaging a wide range of of food products, from salad containers to to microwavable trays.

Personal Care Products

PET is commonly used for packaging shampoos, lotions, and other personal care items.

Household Cleaners

PET is a popular choice for packaging household cleaning products and detergents.

Textile Applications of PET

Automotive Applications of PET

Seat Fabrics

PET is used to produce durable and comfortable seat fabrics for vehicles.

Interior Components

PET is incorporated into various interior components, such as door panels and headliners.

Tire Reinforcement

PET fiber is used to reinforce tires, improving their strength and performance.

2 3

Construction Applications of PET

Insulation

PET-based insulation materials provide thermal and acoustic insulation for buildings.

Roofing

PET is used in the production of roofing membranes and tiles, offering durability and weather resistance.

Flooring

PET-based carpets and tiles are popular choices for flooring in both residential and commercial settings.

Emerging Applications of PET

3D Printing	PET filament is increasingly used in 3D printing for its strength printability.
Medical Devices	PET is finding applications in medical implants and prosthetics due to its biocompatibility.
Electronics	PET is used in the production of flexible electronics and displaced components.

Thermoforming and Packaging Applications

Thermoforming

PET can be heated and formed into various shapes, making it suitable for the production of trays, lids, and other packaging components.

Food Packaging

PET's excellent barrier properties, clarity, and durability make it a popular choice for for packaging food, beverages, and other other consumable products.

Thermoforming and Packaging Applications

Consumer Goods

PET is also used in the manufacture of household items, such as containers for personal care products, electronics, and other consumer goods.

Textile Applications

PET fibers are widely used in the textile industry, creating fabrics and garments known for their strength, wrinkle resistance, and ease of care.

Recycling and Sustainability

High Recyclability

PET is one of the most widely recycled plastics, with well-established recycling recycling systems and technologies in place to recover and reuse PET materials.

2

Closed-Loop Recycling

Recycled PET can be used to create new PET products, creating a closedloop cycle and reducing the reliance on virgin raw materials.

3

Environmental Benefits

Recycling PET helps to conserve natural resources, reduce energy consumption, and decrease the amount amount of plastic waste ending up in landfills and the environment.

4

Sustainability Efforts

Ongoing research and development are are focused on improving the sustainability of PET production, including the use of bio-based feedstocks and advanced recycling technologies.

Recycling and Sustainability

Conclusion and Future Trends

Innovation

Continuous advancements in PET production and recycling technologies will drive the development of more sustainable and environmentally-friendly PET solutions.

Circular Economy

The PET industry is embracing the principles of of a circular economy, focusing on closed-loop recycling and the reuse of PET materials.

Sustainability

As concerns about environmental impact grow, the PET industry will continue continue to prioritize sustainability and reduce the the carbon footprint of PET production and usage.

How a PET Bottle is **Recycled** !!!

https://youtu.be/vBpNp0wYV8I?si=kkHHj KpynipKdC4R

